14k^2=30+23k

Simple and best practice solution for 14k^2=30+23k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14k^2=30+23k equation:



14k^2=30+23k
We move all terms to the left:
14k^2-(30+23k)=0
We add all the numbers together, and all the variables
14k^2-(23k+30)=0
We get rid of parentheses
14k^2-23k-30=0
a = 14; b = -23; c = -30;
Δ = b2-4ac
Δ = -232-4·14·(-30)
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2209}=47$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-47}{2*14}=\frac{-24}{28} =-6/7 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+47}{2*14}=\frac{70}{28} =2+1/2 $

See similar equations:

| 5^2x+18=9(5^x) | | j+-13=-24 | | x+90+26=180 | | 100+x+20=180 | | X^2+2m+1=0 | | j-13=-24 | | 2x+10=-50+7x | | 49=7(2x-1) | | 8h=A | | 5x+18+2x+22=180 | | (4x+27)=7x | | (X^2+4x)^2+7(x^2+4x)+12=0 | | .05n+.10(n+8)=2.15 | | 7w+7=10w-15+1 | | x+x+12=92 | | 4(x−3)−8=16 | | -7x+3=7x-109 | | X^-4-5x^-2+6=0 | | 35+14.5x=2x-5 | | (10)/(x+5)=2 | | 3x+8=-4+7x | | |x-4|+6=14 | | 9-4x=5x+72 | | (A-964)x12=72 | | 9g+6=33 | | 3(7=2x)+3=3(5+x)-9(x+1) | | 5x-18=3x+20.4 | | 7t-t-5=5t+4 | | x=1/4(12-x)=x+3(4-x)-2 | | y/2+17=27 | | |n|=7 | | -7x+9=3x-23 |

Equations solver categories